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1 Introduction

An exciting new application of nonlinear pro-
gramming techniques is mathematical programs
with complementarity constraints (MPCC),

f(x)
c(x) >0
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minimize

subject to (1.1)

where z = (z9,x1,22) and L is the complemen-
tarity operator, which requires that either a com-
ponent x1; = 0 or the corresponding component
z9; = 0. It is straightforward to include equality
constraints in (1.1). Problems of this type arise
in many engineering and economic applications;
see the survey [6], the monographs [12, 13], and
the growing collections of test problems [9, 4].
One attractive way of solving (1.1) is to replace
the complementarity condition by a set of non-
linear inequalities, such as Xz, < 0, and then
solve the equivalent nonlinear program (NLP),

f(z)
c(x) >0
z1, T2 > 0, Xjzs <0,

minimize

subject to (1.2)

where X; = diag(z;). Unfortunately, it has been
shown [15] that (1.2) violates the Mangasarian-
Fromovitz constraint qualification (MFCQ) at
any feasible point. This failure of MFCQ implies
that the multiplier set is unbounded, the central
path fails to exist, the active constraint normals
are linearly dependent, and linearizations of (1.2)
can become inconsistent arbitrarily close to a so-
lution. In addition, early numerical experience
with this approach has been disappointing [2].
As a consequence, solving MPCCs via NLPs such
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as (1.2) has been commonly regarded as numer-
ically unsafe.

The failure of MFCQ in (1.2) can be traced
to the formulation of the complementarity con-
straint as X;zo < 0. Consequently, algorithmic
approaches have focused on avoiding this for-
mulation. Instead, researchers have developed
special purpose algorithms for MPCCs, such as
branch-and-bound methods [2], implicit nons-
mooth approaches [13], piecewise SQP meth-
ods [12], and perturbation and penalization ap-
proaches [5] analyzed in [16]. All of these tech-
niques, however, require significantly more work
than a standard NLP approach to (1.2).

Recently, exciting new developments have
demonstrated that the gloomy prognosis about
the use of (1.2) may have been premature. Stan-
dard NLP solvers have been used to solve a large
class of MPCCs, written as NLPs, reliably and ef-
ficiently. This short note surveys these novel de-
velopments and summarizes open questions and
possible extensions of these ideas.

The remainder is organized as follows. The
next section provides a summary of certain sta-
tionarity concepts for MPCCs and establishes an
important relationship with the Karush-Kuhn-
Tucker (KKT) conditions of (1.2). This relation-
ship is pivotal in the success of NLP solvers. The
development of two important classes of solvers,
sequential quadratic programming (SQP) and
interior-point methods (IPMs), is charted in the
subsequent two sections. The note concludes by
providing a brief description of open problems.

2 The NLP Revolution

The resurgence of interest in the analysis of NLP
solvers applied to (1.2) is motivated by the suc-
cess of SQP methods in particular. A simple but
key observation of Scholtes is that strong sta-



tionarity is equivalent to the KKT conditions of
(1.2).

A point z* is called strongly stationary if and
only if there exist multipliers A > 0, 71, and »
such that
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These are the KK T conditions of the relazed NLP
[15], which contains no complementarity condi-
tion and is therefore well behaved.

The KKT conditions of (1.2) are similar to
(2.1), and this similarity will be exploited. For-
mally, a point z* is called is a KKT point of
(1.2) if and only if there exist multipliers A > 0,
vy >0, vy >0, and £ > 0, such that

0
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Note that complementarity between & and
Xfze < 0 follows trivially. Now observe that
(2.1) and (2.2) are equivalent if we set

v1 — Xl (2.3)
Vg — le (24)
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Hence there exists a minimal value of £, namely,
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(2.5)
from which it follows that the unboundedness of
the multipliers of (1.2) has a very special struc-
ture: the multipliers form a ray.

The fact that the KKT conditions of (1.2) are
equivalent to strong stationarity implies the ex-

istence of bounded multipliers. This can be ex-
ploited in the analysis of SQP methods and in
the design of robust IPM methods for MPECs.

3 SQP Lead the Way

SQP methods have recently been shown to solve
MPCCs reliably as NLPs, despite the common
folklore that this approach is doomed. Over
150 problems were solved, and the SQP solver
obtained quadratic convergence for all but two
problems [7].

This success of SQP methods has motivated
renewed interest in the theoretical properties of
SQP methods. In [1] it is shown that an SQP
method with elastic mode converges locally. The
key idea is to consider a penalized version of
(1.2). The penalty problem satisfies MFCQ; and
near a strongly stationary point, a sufficiently
large penalty parameter can be found, similar to
(2.5). Convergence can thus be established by
using standard techniques.

In [8] it is shown that SQP converges superlin-
early near a strongly stationary point. The proof
is divided into two parts. First, it is shown that if

mgk)ngk) = 0 at some iteration k, then the SQP
approximation of (1.2) about this point is equiv-
alent to the SQP approximation of the relaxed
NLP. Since the latter is a well behaved problem,
superlinear convergence follows. The second part

of the proof assumes that mgk)ngk) > 0, and it
is shown that each QP basis remains bounded
away from singularity. Again, convergence can
be established by using standard techniques.

One undesirable assumption in [8] is that all
QP approximations are consistent. This is triv-
ially true if :cgk)Txgk) = 0 for some k, and it can
be shown to hold if the lower-level problem sat-
isfies a certain mixed-P property [12]. In prac-
tice [7], a simple heuristic is implemented that
relaxes the linearization of the complementarity
constraint.

4 Interior-Point Methods

In contrast to SQP methods, interior-point meth-
ods (IPMs) are not as robust at solving MPCCs.
Using default settings, they solve about 80% of



MPCCs. This is still remarkable, however, con-
sidering that the constraint gradients are depen-
dent and the central path fails to exist.

The reason for the nonexistence of the central
path is the complementarity constraint. Clearly,

1 >0, 29 >0, and X223 <0

have no interior. As a consequence, multipli-
ers can become unbounded, resulting in slow
progress (if any) toward the solution.

Three approaches to remedy this situation are
being investigated. The first two are related to
[16] and either relax the complementarity con-
straint or penalize it. The third approach mixes a
simple active set heuristic with the IPM to iden-
tify and remove indices of bi-active constraints
(x1; = 0 = x9;) [3]. It is not clear at present,
however, what convergence properties this ap-
proach possesses.

The relaxation scheme [11, 14] introduces a pa-
rameter 7 > 0 and relaxes the complementarity
constraint to

$120,$220 and X1$2§T.

A standard primal-dual method is then applied,
and the parameter 7 is controlled in conjunction
with the barrier parameter. It can be shown that
near a strongly stationary point, the multipliers
remain bounded and the central path exists.

An alternative to relaxation is to introduce
an {1 penalty for the complementarity constraint
and add pz{xs to the objective. The resulting
penalized NLP satisfies MFCQ and is well be-
haved. In addition, since z;,x> > 0, no absolute
values are required, and the problem is smooth.
Near a strongly stationary point, a sufficiently
large (but finite) penalty parameter exists, and
any IPM method converges to this stationary
point. We are investigating techniques for up-
dating the penalty parameter, p.

The two schemes can be shown to be equiva-
lent in the sense that for every relaxation 7 there
exists a penalty parameter p such that both ap-
proaches give the same solution. We prefer to
control the penalty parameter, however, as it al-
lows us to control the multipliers directly.

Interior-point methods for MPCCs have also
been considered in [12], for example, the penalty
interior-point algorithm (PIPA). This is a hybrid
SQP-IPM method that aims to remain interior

only with respect to the variables in the comple-
mentarity constraint, by perturbing it to

23120,:13220, and X1$2:T.

Note that the last constraint is an equation. It
is possible to construct a simple example where
x7 = x5 = 0 and the central path fails to ex-
ist. Thus, this perturbation is suitable only for
problems without bi-active constraints. In [10]
another example is constructed that shows that
PIPA may fail to converge, even when strict com-
plementarity (z} + 3 > 0) holds. The reason for
this adverse behavior is the trustregion used in
PIPA, which is controlled by the norm of the in-
feasibility.

5 Conclusion and Outlook

The underlying theme of the preceding two sec-
tions has been to show that small modifications
enable NLP solvers to work for MPCCs. Both
SQP methods and IPM solvers either perturb
or penalize the complementarity constraint. The
key to proving convergence in both cases is the
equivalence between strong stationarity (2.1) and
the KKT conditions (2.2).

The robust solution of MPCCs as NLPs has
harnessed the power of large-scale NLP solvers to
this new and exciting class of problem. Despite
this success, however, there still remain some
open questions.

An important open question is whether global
convergence results can be established and—
more important—whether these results can be
strengthened to provide convergence to B-
stationary points [15]. For instance, it is easy
to construct examples for which the NLP ap-
proaches converge to a feasible C-stationary
point. Unfortunately, C-stationary points allow
trivial first-order descent directions (and are re-
ally a misnomer!). Convergence to B-stationary
points that are not strongly stationary can be
observed in practice, even though the multiplier
of the complementarity constraint & diverges to
infinity.

Some MPCCs require global solutions to be
obtained. For instance, in the context of brit-
tle fracture identification, the global minimum
corresponds to the first structural failure. Local
minima are physically meaningless in this case.



Finding global minima for large NLPs is a chal-
lenging problem, and success is likely to involve
the use of robust NLP techniques in conjunction
with complementarity solvers.
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